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Study of the Ridge-Loaded Helical-Groove
Slow-Wave Structure
Wenxiang Wang, Guofen Yu, and Yanyu Wei

Abstract—The proposition to name the helical waveguide with
the inner wall removed helical grooveis presented in this paper.
As an all-metal slow-wave circuit, the ridge-loaded helical-groove
structure is especially suited for use in millimeter TWT’s due to
its advantages of large size, high manufacturing precision, and
good heat dissipation. However, the analysis of this slow-wave
circuit was never before done. For analyzing this structure, the
cylindrical coordinates are employed in the center space and the
helical ones are used in the gap and groove regions. Making use
of the matching conditions of the RF fields and the continuity
of the voltage and current at the boundaries, the expressions for
the dispersion and the coupling impedance of the ridge-loaded
helical groove are obtained. The relationship of the dispersion and
impedance to the ridge dimensions are also given. It is indicated
from the calculation results that approximately 30% bandwidth
for this structure can be achieved.

Index Terms—Millimeter wave, slow-wave structure, traveling-
wave tube.

I. INTRODUCTION

A S THE component of beam-wave interaction of a TWT
for exciting microwave energy, the slow-wave circuit

directly influences the TWT’s properties. A helix and its
modifications (ring-bar, ring-loop structures, etc.) and coupled-
cavity (and ladder line, etc.) are most commonly used in
TWT’s as slow-wave structures. A helix has very wide band-
width, but the small thermal capacity, and the low heat
dissipation are its fatal weaknesses, which restrict the output
power of TWT’s. The thermal dissipation capability of the
coupled cavity is clearly better than that of the helix; however,
its operation bandwidth is considerably more narrow compared
with that of the helix.

Seeking some new slow-wave structures possessing broader
bandwidth and higher power capacity is the constant goal for
which the microwave tube workers make their great efforts. It
seems difficult to satisfy both excellent properties simultane-
ously. This problem is to some extent linked to the openness of
the slow-wave system: weaker dispersion and wider bandwidth
require an increase in the openness within certain dimensional
range; conversely, improving heat dissipation and enhancing
the power level require more closeness. It is thus clear that
the two requirements above are conflicting. Consequently,
up to now the efforts are mainly concentrated on further
increasing the output power of a helix TWT by means of new
techniques, new materials, new processes, and on searching for
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Fig. 1. The configuration of the ridge-loaded helical-groove slow-wave
circuit.

some new all-metal slow-wave structures which have wider
bandwidth—such as helical waveguide, helical groove,-type
line, etc.

The configuration of a helical-groove slow-wave structure
is shown in Fig. 1. This kind of slow-wave circuit is usually
namedhelical waveguide, but this leads to some confusion
because the structure formed by directly spiraling a rectangular
waveguide about an axis into a helix is also called a helical
waveguide [1]. The helical groove can be considered as being
formed by removing the inner wall of the helical waveguide;
however, a large difference exists between them when they are
used as the slow-wave circuit. An annular electron beam or
multibeam injects axially through a slit gap (or some holes) at
the waveguide’s broadwall in the case of a helical waveguide
structure [2] and the electron-beam passageway is the central
hole on the axis in the case of the helical-groove structure.
Thus, in order to avoid ambiguity and tally with the actual
situation, it is reasonable to name the latterhelical groove.

The characteristics of the helical groove are as follows. The
dimension precision can be easily ensured in the manufactur-
ing and machining. The large power-handling capability can
be achieved owing to the all-copper structure. Large sizes,
low cost, high precision, and good heat dissipation make the
helical groove slow-wave system especially suitable for use in
millimeter TWT’s.

The original concept of the helical groove may be traced
back to 1949. In that year, Field presented the proposal of
using the helical groove as the slow-wave system [3]. Af-
terwards, the analyses of rectangular helical-groove structure
were done by Henoch [4] and Nwachuku [5]. The studies
of this structure were also developed in the USSR [6]. In
Henoch’s work, the TE and TM modes and their space
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harmonics are considered in the center region of the helical
groove, in the groove space the TE mode propagating in the
helical direction and the helical coordinates are employed.
Henoch’s theory is improved by Fould [7], who theorized
that the fast-wave and slow-wave modes are simultaneously
taken into account and the dispersion equation of the loadless
helical groove is obtained under the condition of pitch angle

satisfying .
The Raytheon Company reported at the International

Electron Devices Meeting (IEDM’88) that an experimental
millimeter-wave TWT using a ridge-loaded helical groove as
a slow-wave circuit had been built [8]. This TWT obtained
output power of 163 W at 42 GHz with an electronic efficiency
of 6.2%. The report noted that none of the existing theories of
the helical-groove structure are capable of analyzing the effects
of the ridge dimensions on circuit characteristics, though the
results of cold-test experiments and TWT’s parameters are
given in Raytheon’s paper.

In this paper, using the matching conditions which are
simpler than that employed in Henoch’s and Fould’s theories,
and considering the effects of the ridge load, we obtained the
dispersion equation and the coupling impedance expression
of the ridge-loaded helical-groove circuit and numerically
calculated the relationships of the dispersion and coupling
impedance versus ridge dimensions. This paper includes six
sections. Section I includes the proposal for the name of helical
groove. Section II gives the field distributions in the structure
and the conversion between center-space and groove-space
coordinates. In Section III, the dispersion characteristic is
derived by using boundary conditions, particularly, the voltage
and current continuity on the outer surface of the ridges. The
solution of the interaction impedance is presented in Section
IV. Section V gives the numerical results. Finally, a short
conclusion is given in Section VI.

II. THE FIELDS IN THE HELICAL GROOVE STRUCTURE

A. The Coordinate Systems

Fig. 1 gives the longitudinal section through the axis of
the ridge-loaded helical-groove slow wave circuit model. The
azimuthal coordinate of this section is. In this figure, ,
, and represent the structure period, groove width, and

gap breadth, respectively; , , and indicate the radii of
the center space, outer surface of the ridge, and the groove
bottom, respectively. The analytic model can be divided into
the following three regions:

Region I interaction regions, i.e. center space ;
Region II gap space

;
Region III groove space ,

where is the order of the groove or gap. In Region
I, the cylindrical coordinates are employed and the
helical coordinates are used in Regions II and III.
Both coordinate systems on the surface are shown in
Fig. 2. Obviously, the helical coordinates are not an orthogonal
system because thedirection is along the center line of the

Fig. 2. The coordinate systems on surfacer = ra.

groove. However, if the pitch angle is small enough that the
condition can be satisfied, it does approximate to a
cylindrical coordinate system. Then, thewill be measured in
the direction being perpendicular to the axis, but not along the
helical direction of the groove, and thewill be approximately
equal to .

B. The Fields in Interaction Region

The combination of TE and TM waves may exist in the
center space, and both slow and fast waves may be excited in
the same region due to the closeness of the structure. Each of
these waves will consist of infinite sums of space harmonics
as a result of the periodicity of the structure. Thus, we have
the following fields in Region I:

(1)

If , (1) represents slow-wave modes,
and uses the upper sign from the signs

or in front of some expressions. If , these
express fast-wave modes, and use the
lower sign. represents the modified Bessel function of the
first kind of order , and is the ordinary Bessel function
of the first kind. is the radial propagation constant,is
the wave number in free space, is the axial propagation
constant and can be expressed as

(2)

where is the order of the space harmonic.

C. The Fields in Gap Space and Groove Space

In the gap and groove regions, a TE mode which is
homogeneous across the breadth of the gap and groove is
assumed; in other words, we suppose the electric field has no
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variation in the direction, thus the fields can be written as

(3)
The should be replaced by in (3) when is
an integral . Here, is an angular propagation coefficient
and indicates the wavelength number in one revolution or the
wavelength number corresponding to a change of

Then

(4)

and the slow-wave condition can be rewritten as

(5)

D. The Conversion Between Coordinate Systems

The fields of Regions II and III are independent of the
direction in the , , and coordinate system, but the fields in
the , , coordinate system will vary with. Consequently,
the expressions of the fields variation withmust be known
for matching them at the surface , which is parallel to
the axis but not to .

As shown in Fig. 2, let us consider point on the middle
line of the groove

The variation for when changes along the axis from to
an arbitrary point is

thus

(6)

Substituting the above expressions into (3), the relations
between the fields and are derived.

III. D ISPERSIONCHARACTERISTIC

Using the matching conditions of fields at the boundaries
between regions, we can get the dispersion equation of a
ridge-loaded helical-groove circuit.

A. Matching the Electric Fields at

The matching conditions of -fields at boundary are

(7)

Substituting in (3) and in (6) into (7), and applying the
Fourier analysis, we obtain

(8)
where

B. The Continuity of Magnetic Fields at

The other matching condition on the boundary between
Regions I and II should be the continuity for the average value
of across the groove

(9)

Inserting (1), (3), (6), and (8) into (9) we have

(10)

Under the assumption , we get ,
, and

Thus, (10) can be rewritten as

(11)
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C. The Boundary Condition at

It is clear that at the surface , the tangential -field
should be zero:

(12)

Without sacrificing the generality, we can assume

(13)

and then from (12) we have

(14)

D. The Matching Conditions at

The matching conditions for electromagnetic fields can
not directly be used at the boundary between Space II and
III, because only the constant component of -fields is
considered in those regions; furthermore, the width of Regions
II and III are different. Replacing the matching of the fields by
the voltage and current continuity conditions at gives

(15)

where [9]

ln ln

provided that , is the permittivity of the vacuum,
is the discontinuity capacitance at boundary , and
is the corresponding susceptance.

The voltage can be expressed as

(16)

and the current of unit length on the surface of the conductor
should be

(17)

By means of (3), (13), and (14), the , may be solved
from (15) as follows:

(18)
where

E. Dispersion Equation

Inserting (18) into (11), we finally get the dispersion equa-
tion (19), shown at the bottom of the page, of the ridge-loaded
helical-groove slow-wave structure.

For the circuit without ridge loading, i.e., , ,
, the dispersion equation is reduced to

(20)

This expression is completely identical with the results given
by Fould in [7].

IV. COUPLING IMPEDANCE

The coupling impedance ofth space harmonic is defined as

(21)

where is the longitudinal component of the electric field
of the th space harmonic at , the position of the electronic
beam, and is its conjugate value. According to (1) and
(8), we have

(22)

(19)
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is the total power flow through the whole circuit system:

(23)

, are the power in Regions II and III, respectively,
and is the power flow of the th space harmonic in Space
I. Making use of the derived results from Section III about the
components of the field, , , and are as follows:

(24)

(25)

(26)

Fig. 3. The dispersion curves of the ridge-loaded helical groove with variant
rc.

Fig. 4. The dispersion curves of the ridge-loaded helical groove with variant
w.

where , are given by (18). If is a integral, then
should take place of , and should

be replaced by . In the process of deriving and
, the relevant integral formulas of Bessel functions from

[10] were used.

V. THE RESULTS OFCALCULATION

The dispersion curves of the fundamental mode of the
ridge-loaded helical groove slow-wave structure, calculated
according to (19), shown at the bottom of the previous page,
are shown in Figs. 3 and 4. The lines of are also
given in these figures. The parts above those lines are the
regions of fast waves , and that below those lines
are the regions of slow waves . Fig. 3 shows the
variations of the dispersion curves with, the larger the
is, the lower the operation frequency and the more narrow the
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Fig. 5. The relation between phase velocity and frequency under varianthl.

Fig. 6. The relation between coupling impedance and frequency under
variant hl.

passbands are. When, the width of the gap, is changed, the
dispersion curves are shown in Fig. 4. The influence of the
change of width on the operation frequency of the helical-
groove structure is not so obvious as that of the change of.
The bandwidth increases with the raising of.

The dispersion curves of the high-order harmonics
can be obtained by moving the curves of fundamental mode
by along the abscissa toward the right or the
left .

In the range of the relations between the
phase velocity or coupling impedance and the frequency for
the fundamental slow wave under various sizes of
the helical grooves are shown in Figs. 5–10.

Figs. 5 and 6 show the variations of the phase velocity and
coupling impedance when is 0.1, 0.2, 0.4, and 0.8 cm,
respectively. With the reduction of , phase velocity decreases
and the coupling impedance rapidly lessens.

Fig. 7. The relation between phase velocity and frequency for variousrc.

Fig. 8. The relation between coupling impedance and frequency for various
rc.

The relations between the , , and for various
are given in Figs. 7 and 8. It can be seen that for the same
frequency the decrease of the radiusleads to the increase of
the phase velocity and coupling impedance. The raising of
can be explained as follows: the field is pushed toward the gap
with the reducing of , therefore, the impedance increases.

The effect of width of the gap on the phase velocity is
far less than that of and (Figs. 9 and 10). At the moment
of the high frequency, the change ofalmost does not cause
any variation of . The coupling impedance has a more
complex relation with width —the intersection of the curves
obviously occurs here. However, in summary, the variation of

with is not large.

VI. SUMMARY

The detailed analysis of the ridge-loaded helical groove
is presented and the dispersion equation and the expression
of the coupling impedance are given. It is indicated from
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Fig. 9. The relation between the phase velocity and frequency for variousw.

Fig. 10. The relation between the coupling impedance and frequency for
variousw.

the calculations that this type of slow-wave structure has
approximately 30% bandwidth. The curves of the relations
between the phase velocity or coupling impedance and the
dimensions of the structure are also obtained. These curves
are useful for designing the ridge-loaded helical-groove slow-
wave structure.
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